ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 32114
Темы:    [ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 3
Классы: 6,7,8,9
В корзину
Прислать комментарий

Условие

Найдите все простые числа, которые нельзя записать в виде суммы двух составных.


Решение

  Докажем, что любое простое число  p > 11  представляется в виде суммы двух составных. Поскольку любое такое число нечётно, то число  p – 9  чётно и, следовательно, составное. Поэтому  p = (p – 9) + 9  – искомое представление.
  С другой стороны, непосредственно проверяется, что числа 2, 3, 5, 7 и 11 не представимы в виде суммы двух составных.

Замечания

Источник решения: книга В.О. Бугаенко "Турниры им. Ломоносова. Конкурсы по математике". МЦНМО-ЧеРо. 1998.

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
год/номер
Номер 12
Дата 1989
задача
Номер 13

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .