ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 32118
Темы:    [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Из квадратного листа бумаги в клетку, содержащего целое число клеток, вырезали квадрат, содержащий целое число клеток так, что осталось 124 клетки. Сколько клеток мог содержать первоначальный лист бумаги?


Решение

Задача сводится к решению в натуральных числах уравнения  x² – y² = 124,  которое можно переписать в виде  (x – y)(x + y) = 124.  Хотя бы один из множителей левой части чётен, поэтому x и y имеют одинаковую четность, значит, оба числа  x – y  и  x + y  чётны. Единственный способ разложить число 124 на два чётных сомножителя – это 2·62. Значит сумма чисел x и y равна 62, а разность – 2, откуда   x = 32,  y = 30.


Ответ

32² = 1024 клетки.

Замечания

1. Источник решения: книга В.О.Бугаенко "Турниры им. Ломоносова. Конкурсы по математике". МЦНМО-ЧеРо. 1998.

2. Ср. с задачей 98336.

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
год/номер
Номер 13
Дата 1990
задача
Номер 02

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .