ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 32793
Тема:    [ Теория множеств (прочее) ]
Сложность: 3+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

В некотором царстве живут маги, чародеи и волшебники. Про них известно следующее: во-первых, не все маги являются чародеями, во-вторых, если волшебник не является чародеем, то он не маг. Правда ли, что не все маги -- волшебники?

Решение

Сначала немного переформулируем условия задачи. Итак, нам известны два утверждения:
  1) По крайней мере один маг не является чародеем;
  2) Если маг - также и волшебник, то он является и чародеем.
Посмотрим теперь на любого мага, не являющегося чародеем (такой существует из 1-го условия). Если бы он был еще и волшебником, то по 2-му условию он был бы и чародеем, но он не чародей, значит, он и не волшебник. Следовательно, не все маги являются волшебниками.

Ответ

Да, правда.

Источники и прецеденты использования

Кружок
Название ВМШ 57 школы
класс
Класс 7
год
Год 2001/02
Место проведения 57 школа
занятие
Номер 4
Название Логика и логики
Тема Математическая логика
задача
Номер 04

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .