ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 32820
УсловиеИзвестно, что среди нескольких монет имеется ровно одна фальшивая (отличается по весу от настоящих). С помощью двух взвешиваний на чашечных весах без гирь определите, легче или тяжелее фальшивая монета настоящей (находить ее не надо), если монета) 100; б) 99; в) 98? Решениеа) Положим сначала на каждую чашу по 50 монет. Затем возьмем более тяжелую часть, разобьем ее на кучки по 25 монет и взвесим их. Если их массы равны, то фальшивая монета легче остальных, иначе - тяжелее остальных.б) Разделим монеты на 3 кучки по 33 монеты и взвесим любые две из них. Если их массы равны, то сравним любую из них с третьей; если третья кучка легче, то и фальшивая монета легче остальных, иначе фальшивая монета тяжелее остальных. Если же массы первых двух кучек различны, то взвесим более тяжелую из них с третьей. Если их массы окажутся равны, то фальшивая монета легче остальных, если же третья окажется легче, то фальшивая монета тяжелее остальных. в) Отложим сначала две монеты в сторону, а остальные разобьем на 2 части по 48 монет и взвесим их. Если их массы равны, то взвесим две отложенные монеты с любыми двумя другими; если отложенные монеты окажутся легче, то и фальшивая монета легче остальных, иначе - тяжелее. Если же массы первых двух кучек различны, то аналогично пункту а) разобьем более тяжелую на 2 части по 24 монеты и взвесим их. Если весы покажут равенство, то фальшивая монета легче остальных, иначе - тяжелее. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|