ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 34869
УсловиеМаляр-хамелеон ходит по клетчатой доске как хромая ладья (на одну клетку по вертикали или горизонтали). Попав в очередную клетку, он либо перекрашивается в её цвет, либо перекрашивает клетку в свой цвет. Белого маляра-хамелеона кладут на чёрную доску размером 8×8 клеток. Сможет ли он раскрасить её в шахматном порядке? ПодсказкаРассмотрите момент, когда была перекрашена последняя клетка. РешениеДопустим, что перекрасить в шахматном порядке удалось. Рассмотрим последнюю перекрашенную клетку. Допустим, она стала чёрной. Тогда все её соседи – белые. Маляр пришёл на неё, будучи белым, значит, не мог перекрасить её в чёрный цвет. ОтветНе сможет. |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|