ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 35445
Тема:    [ Полуинварианты ]
Сложность: 2+
Классы: 7,8
В корзину
Прислать комментарий

Условие

В стране несколько городов, попарные расстояния между которыми различны. Путешественник отправился из города А в самый удаленный от него город Б, оттуда - в самый удаленный от него город С и т.д. Докажите, что если С не совпадает с А, то путешественник никогда не вернется в А.

Подсказка

Каждое следующее путешествие не короче предыдущего.

Решение

Предположим, что на втором шаге путешественник не возвратился в А, т.е. город С отличен от города А. Тогда маршрут от А до Б короче маршрута из Б в С (поскольку С - наиболее удаленный от Б город). В дальнейшем каждый следующий маршрут будет не короче предыдущего, так как каждый раз мы в качестве следующего пункта назначения выбираем наиболее удаленный город. Пусть на некотором шаге путешетвенник все же вернулся в город А, выйдя из некоторого города Х. По доказанному, маршрут от Х до А длиннее маршрута от А до Б, а это противоречит тому, что Б - наиболее удаленный от А город.

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .