ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 35608
Тема:    [ Инварианты и полуинварианты ]
Сложность: 3-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

По кругу стоят натуральные числа от 1 до 6 по порядку. Разрешается к любым трём подряд идущим числам прибавить по 1 или из любых трёх, стоящих через одно, вычесть 1. Можно ли с помощью нескольких таких операций сделать все числа равными?

Подсказка

Рассмотрите суммы диаметрально противоположных чисел.

Решение

Рассмотрим три суммы - первого и четвертого, второго и пятого, третьего и шестого. Вначале эти суммы были равны соответственно 1+4=5, 2+5=7, 3+6=9. Заметим, что при выполнении первой операции, описанной в условии, каждая из этих трех сумм возрастает на 1, а при выполнении второй операции - каждая из сумм уменьшается на 1. Таким образом, эти три суммы никогда не станут равными. Отсюда следует, что все шесть чисел также не могут стать равными.

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .