ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 37005
УсловиеТрапеция АВСD с основаниями AB и CD вписана в окружность. Докажите, что четырёхугольник, образованный ортогональными проекциями любой точки этой окружности на прямые AC, BC, AD и BD, является вписанным. Решение Пусть P – произвольная точка окружности, описанной около данной трапеции АВСD, X, Y, Z и U – ортогональные проекции точки P на AC, BC, BD и AD соответственно (см. рис.).
Так как трапеция вписана в окружность, то она – равнобокая. Пусть Q – точка, симметричная P относительно оси симметрии трапеции, тогда ∠QAC = ∠PBD. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|