ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52352
Темы:    [ Вписанный угол, опирающийся на диаметр ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В треугольнике ABC на стороне AC как на диаметре построена окружность, которая пересекает сторону AB в точке M, а сторону BC – в точке N. Известно, что  AC = 2,  AB = 3,  AM : MB = 2 : 3.  Найдите AN.


Подсказка

AB·CM = BC·AN.


Решение

  Поскольку точки M и N лежат на окружности с диаметром AC, то  ∠AMC = ∠ANC = 90°.
  По теореме Пифагора  MC² = AC² – AM² = 2² – (6/5)² = 64/25BC² = MC² + BM² = 64/25 + (9/5)² = 29/5.
  Следовательно,  AN = 2SABC/BC = AM·MC/BC = .


Ответ

.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 14

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .