ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52376
Темы:    [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

В окружность вписан четырёхугольник MNPQ, диагонали которого взаимно перпендикулярны и пересекаются в точке F. Прямая, проходящая через точку F и середину стороны NP, пересекает сторону MQ в точке H. Докажите, что FH — высота треугольника MFQ и найдите её длину, если PQ = 6, NF = 5, $ \angle$MQN = $ \alpha$.


Ответ

$ \sqrt{61\sin ^{2}\alpha - 25}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 38

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .