ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52432
Темы:    [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Из точки A, лежащей вне окружности, проведены к окружности касательная и секущая. Расстояние от точки A до точки касания равно 16, а расстояние от точки A до одной из точек пересечения секущей с окружностью равно 32. Найдите радиус окружности, если расстояние от её центра до секущей равно 5.


Решение

  Пусть секущая пересекает окружность в точках B и C, а M – точка касания. Тогда  AM = 16,  AC = 32,  BC = 32 – BA.  По теореме о касательной и секущей
AM² = AC·AB,  или  16² = 32(32 – BC).  Отсюда  BC = 24.
  Пусть K – проекция центра O данной окружности на хорду BC. Радиус окружности находим по теореме Пифагора:  R² = OB² = OK² + BK² = 169.


Ответ

13.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 94

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .