ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52611
Темы:    [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Против большей стороны лежит больший угол ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Треугольники ABC и ADC имеют общую сторону AC; стороны AD и BC пересекаются в точке M. Углы B и D равны по 40°. Расстояние между вершинами D и B равно стороне AB,  ∠AMC = 70°.  Найдите углы треугольников ABC и ADC.


Решение

  Поскольку отрезки AD и BC пересекаются, точки D и B лежат по одну сторону от прямой AC. Следовательно, точки A, B, C, D лежат на одной окружности. Рассмотрим два случая.
  1) Точки идут в порядке A, D, B, C. Тогда AMC – внешний угол треугольника AMD,поэтому ∠DAB = ∠DAM = 30°. Но  ∠ADB > 40°.  Значит,  AB > DB,  что противоречит условию.
  2) Точки идут в порядке A, B, C, D (см. рис.). Тогда  ∠DMC = 30°,  ∠BCA = ∠BCD = ∠DCM = 30°.  Следовательно,  ∠DCA = 60°,  ∠BAC = 110°,  ∠DAC = 80°.


Ответ

 ∠BAC = 110°,  ∠BCA = 30°,  ∠DCA = 60°,  ∠DAC = 80°.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 276

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .