ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52710
Темы:    [ Две касательные, проведенные из одной точки ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Дана окружность радиуса 1. Из внешней точки M к ней проведены две взаимно перпендикулярные касательные MA и MB. Между точками касания A и B на меньшей дуге AB взята произвольная точка C и через неё проведена третья касательная KL, образующая с касательными MA и MB треугольник KLM. Найдите периметр этого треугольника.


Подсказка

Отрезки касательных, проведённых к окружности из одной точки, равны между собой.


Решение

Поскольку KA = KC и BL = LC, то

ML + LK + KM = ML + (LC + CK) + KM =

= (ML + LC) + (CK + KM) = (ML + LB) + (AK + KM) =

= MB + AM = 1 + 1 = 2.


Ответ

2.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 375

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .