ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52838
Темы:    [ Вспомогательная окружность ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

На стороне квадрата во внешнюю сторону построен прямоугольный треугольник, гипотенуза которого совпадает со стороной квадрата. Докажите, что биссектриса прямого угла этого треугольника делит плошадь квадрата пополам.


Подсказка

Прямая, проходящая через центр параллелограмма, делит его площадь пополам.


Решение

Окружность, описанная около построенного треугольника, проходит через центр квадрата. Поскольку дуга окружности, заключённая внутри квадрата, делится его центром пополам, то биссектриса прямого угла построенного треугольника проходит через центр квадрата, и поэтому делит его площадь пополам.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 504

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .