ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52869
Темы:    [ Отношение, в котором биссектриса делит сторону ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9
В корзину
Прислать комментарий

Условие

В равнобедренном треугольнике радиус вписанной окружности составляет 2/7 высоты, а периметр этого треугольника равен 56. Найдите его стороны.


Решение

Пусть CM – высота данного треугольника ABC,  AC = BC,  O – центр вписанной окружности. Тогда OM – радиус этой окружности, AO – биссектриса угла A. Поэтому  AC : AM = CO : OM = 5 : 2.  Поскольку  AC + AM = 28,  то  AC = 20,  AM = 8,  AB = 16.


Ответ

16, 20, 20.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 536

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .