ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 52949
УсловиеОколо треугольника ABC ( A > 90o) описана окружность с центром O. Точка F является серединой большей из дуг, стягиваемых хордой BC. Обозначим точку пересечения стороны BC с радиусом AO через E, а с хордой AF — через P. Пусть AH — высота треугольника ABC. Найдите отношение площади четырёхугольника OEPF к площади треугольника APH, если известно, что радиус описанной окружности R = 2, AE = и EH = .
Ответ22.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|