ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 53201
УсловиеИз точки A на биссектрисе угла с вершиной L опущены перпендикуляры AK и AM на стороны угла. На отрезке KM взята точка P (K лежит между Q и L), а прямую ML – в точке S. Известно, что ∠KLM = α, KM = a, QS = b. Найдите KQ. ПодсказкаТочки P, K, Q и A лежат на одной окружности. Решение Треугольник AKM – равнобедренный с углом α/2 при основании, поэтому AK = . Ответ. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|