ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 53449
Темы:    [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Углы между биссектрисами ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Высоты остроугольного треугольника ABC, проведённые из вершин A и B, пересекаются в точке H, причём  ∠AHB = 120°,  а биссектрисы, проведённые из вершин B и C, – в точке K, причём  ∠BKC = 130°.  Найдите угол ABC.


Решение

  Поскольку  ∠AHB = 120°,  а угол ACB – острый, то  ∠C = 180° – 120° = 60°.
  Поскольку  ∠BKC = 90° + ½ ∠A,  то  ∠A = 80°.
  Следовательно,  ∠B = 180° – 60° – 80° = 40°.


Ответ

40°.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1177

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .