ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 53462
Темы:    [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

На сторонах AC и BC равностороннего треугольника ABC построены внешним образом равнобедренные прямоугольные треугольники ACN и BCM с прямыми углами при вершинах A и C соответственно. Докажите, что  BMBN.


Подсказка

Вычислите углы ABN и CBN.


Решение

  Треугольник BAN равнобедренный, так как  AB = AC = AN.  Поскольку  ∠BAN = ∠BAC + ∠CAN = 150°,  ∠ABN = (180° – ∠BAN) : 2 = 15°,  поэтому
CBN = ∠CBA – ∠ABN = 45°.
  Следовательно,  ∠MBN = ∠CBN + ∠CBM = 90°.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1191

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .