ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 53480
УсловиеС помощью циркуля и линейки постройте треугольник по двум сторонам и медиане, проведённой к третьей.ПодсказкаПредположите, что задача решена, и на продолжении данной медианы вне треугольника отложите отрезок, равный медиане.
РешениеПредположим, что задача решена. Пусть AB и AC — данные стороны, AM — данная медиана. Отложим на продолжении медианы AM за точку M отрезок MP, равный AM. Поскольку четырёхугольник ABPC -- параллелограмм, то PC = AB. Треугольник APC строим по трём сторонам. Продолжив его медиану CM за точку M на отрезок MB, равный MC, получим вершину B искомого треугольника. Задача имеет решение, и притом единственное, если возможно построение треугольника, две стороны которого равны данным сторонам, а третья сторона равна удвоенной данной медиане.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|