ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 53554
Тема:    [ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

В квадрат вписан прямоугольник так, что на каждой стороне квадрата находится одна вершина прямоугольника и стороны прямоугольника параллельны диагоналям квадрата. Найдите стороны этого прямоугольника, зная, что одна из них вдвое больше другой и что диагональ квадрата равна 12.


Подсказка

Докажите, что диагональ квадрата равна полупериметру прямоугольника.


Решение

Пусть вершины M, N, K, L прямоугольника MNKL расположены соответственно на сторонах AB, BC, CD, AD квадрата ABCD; MN = 2KL; сторона MN параллельна диагонали AC квадрата; P и Q — точки пересечения AC с противоположными сторонами ML и NK прямоугольника MNKL. Обозначим ML = NK = 2x, MN = KL = 4x. Тогда MP = NQ = x.

Поскольку APM и CQN — равнобедренные прямоугольные треугольники, то AP = MP = x и CQ = NQ = x. Поэтому

PM + MN + NQ = AP + PQ + QC = 12, или x + 4x + x = 12.

Отсюда находим, что x = 2. Следовательно,

MN = 4x = 8, KN = 2x = 4.


Ответ

4 и 8.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1284

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .