ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 53750
Темы:    [ Отношение, в котором биссектриса делит сторону ]
[ Признаки подобия ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

В равнобедренном треугольнике ABC сторона  AC = b,  стороны  BA = BC = aAM и CN – биссектрисы углов A и C. Найдите MN.


Подсказка

Биссектриса треугольника делит его сторону на отрезки, пропорциональные двум другим сторонам.


Решение

  По свойству биссектрисы треугольника  .  Поэтому  

  Из подобия треугольников BNM и BAC следует, что  MN : AC = BM : BC.  Поэтому  


Ответ

ab/a+b.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1514

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .