ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 54180
УсловиеОдним прямолинейным разрезом отрежьте от треугольника трапецию, у которой меньшее основание было бы равно сумме боковых сторон. ПодсказкаЧерез точку пересечения биссектрис проведите прямую, параллельную стороне треугольника. РешениеПусть прямая, проходящая через точку O пересечения биссектрис треугольника ABC параллельно стороне BC, пересекает стороны AB и AC в точках X и Y соответственно. Тогда ∠BOX = ∠OBC = ∠OBX, поэтому треугольник BOX – равнобедренный. Аналогично докажем, что треугольник CON – также равнобедренный. Значит, XY = XO + OY = BX + CY. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|