ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 54362
Темы:    [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Медиана, проведенная к гипотенузе ]
[ Теорема Пифагора (прямая и обратная) ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В прямоугольном треугольнике ABC  (∠C = 90°)  проведены высота CD и медиана CE. Площади треугольников ABC и CDE равны соответственно 10 и 3. Найдите AB.


Подсказка

DE : AB = SCDE : SABC.


Решение

  Заметим, что  DE : AB = SCDE : SABC = 3 : 10.   Значит,  BC² : AC² = BD : AD = (5 + 3) : (5 – 3) = 4 : 1,  то есть  ВС = 2AC.
  Следовательно,  AC² = SABC = 10,  AB² = 5AC² = 50.


Ответ

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2125

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .