ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 54654
Темы:    [ Вписанные четырехугольники ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

На сторонах AB и BC треугольника ABC отмечены точки D и E соответственно, причём  BD + DE = BC  и  BE + ED = AB.  Известно, что четырёхугольник ADEC – вписанный. Докажите, что треугольник ABC – равнобедренный.


Решение

  Четырёхугольник ADEC – вписанный, поэтому  ∠CAD = ∠BED,  значит, треугольники ABC и EBD подобны по двум углам. Следовательно,
BD : BC = BE : AB.  По условию  BD/BC + DE/BC = 1 = BE/AB + ED/AB,  откуда  ED/AB = 1 – BE/AB = 1 – BD/BC = DE/BC.
  Следовательно,  AB = BC.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2600

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .