ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 54874
Темы:    [ Признаки подобия ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Биссектриса одного из острых углов прямоугольного треугольника высотой, опущенной на гипотенузу, делится на отрезки, отношение которых равно
1 + ,  считая от вершины. Найдите острые углы треугольника.


Подсказка

Рассмотрите подобные треугольники.


Решение

Пусть биссектриса AM прямоугольного треугольника ABC и высота CH, проведённая из вершины прямого угла, пересекаются в точке K, тогда    Прямоугольниые треугольники AHK и ACM подобны. Поэтому    Следовательно,
A = 45°.


Ответ

45°, 45°.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2820

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .