ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55100
Темы:    [ Медиана делит площадь пополам ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

На продолжениях сторон треугольника ABC взяты точки A1, B1 и C1 так, что $ \overrightarrow{AB_{1}} $ = 2$ \overrightarrow{AB}$, $ \overrightarrow{BC_{1}} $ = 2$ \overrightarrow{BC}$ и $ \overrightarrow{CA_{1}} $ = 2$ \overrightarrow{AC}$. Найдите площадь треугольника A1B1C1, если известно, что площадь треугольника ABC равна S.


Подсказка

Медиана делит треугольник на два равновеликих треугольника.


Решение

Поскольку

S$\scriptstyle \Delta$A1BB1 = S$\scriptstyle \Delta$A1AB = S$\scriptstyle \Delta$ABC,

то S$\scriptstyle \Delta$AA1B1 = 2S. Аналогично

S$\scriptstyle \Delta$BB1C1 = S$\scriptstyle \Delta$CC1A1 = 2S.

Следовательно,

S$\scriptstyle \Delta$A1B1C1 = 7S.


Ответ

7S.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3156

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .