ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55440
Темы:    [ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

Трапеция ABCD с большим основанием AD вписана в окружность. Точка E этой окружности выбрана так, что прямая BE перпендикулярна AC. Чему равен радиус окружности, если EA || BD, EC || AB и площадь треугольника BCD равна $ {\frac{\sqrt{3} + 1}{4}}$.


Ответ

1.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4762

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .