ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55462
Темы:    [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Периметр треугольника ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Вписанные и описанные окружности ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Докажите, что прямая делит периметр и площадь треугольника в равных отношениях тогда и только тогда, когда она проходит через центр вписанной окружности треугольника.


Решение

  Пусть P – периметр треугольника ABC, O и r – центр и радиус вписанной окружности, M и N – точки на сторонах AB и AC, MN – прямая, делящая площадь и периметр в равных отношениях:  AM + AN = kP,  SAMN = kSABC.
  С другой стороны,  SAMON = SAMO + SANO = ½ r(AM + AN) = ½ rkP = kSABC.  Поэтому  SMON = 0,  то есть прямая MN проходит через точку O.
  Обратное утверждение доказывается аналогично.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4784
книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 6
Название Разные задачи
Тема Треугольники (прочее)
задача
Номер 05.050

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .