ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 55590
УсловиеС помощью циркуля и линейки постройте треугольник, если дана одна его вершина и три прямых, на которых лежат его биссектрисы.ПодсказкаЕсли A — данная вершина искомого треугольника, принадлежащая одной из трёх данных прямых, то точки, симметричные точке A относительно двух других данных прямых, лежат на прямой, содержащей сторону искомого треугольника.
РешениеПредположим, что нужный треугольник ABC построен. Пусть A — его вершина, лежащая на данной прямой l1, а вершины B и C лежат на данных прямых l2 и l3. Тогда точка M, симметричная точке A относительно прямой l2, и точка N, симметричная точке A относительно прямой l3, лежат на прямой BC. Отсюда вытекает следующий способ построения. Строим точки M и N, симметричные данной точке A (лежащей на данной прямой l1) относительно данных прямых l2 и l3. Прямая MN пересекает прямые l2 и l3 в вершинах B и C искомого треугольника ABC.
ЗамечанияВ "Задачнике Кванта" данная задача формулировалась так:На плоскости даны три прямые, пересекающиеся в одной точке. На одной из них отмечена точка. Известно, что прямые являются биссектрисами некоторого треугольника, а отмеченная Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|