ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55685
Темы:    [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Симметрия помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

В выпуклом четырехугольнике ABCD вершины A и C противоположны. Сторона BC имеет длину, равную 4, величина угла ADC равна 60o, а величина угла BAD равна 90o. Найдите длину стороны CD, если площадь четырехугольника равна

(AB . CD + BC . AD)/2.


Решение


Ответ

4$ \sqrt{3}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 5162

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .