ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55713
Темы:    [ Центральная симметрия помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Пусть P - середина стороны AB выпуклого четырехугольника ABCD. Докажите, что если площадь треугольника PDC равна половине площади четырехугольника ABCD, то стороны BC и AD параллельны.


Подсказка

Рассмотрите симметрию относительно точки P.


Решение

Пусть D1 - образ вершины D при симметрии относительно точки P. Тогда

S(D1PB) + S(CPB) = S(DPA) + S(CPB) = S(CPD) = S(D1PC).

Поэтому точка B лежит на отрезке D1C. Поскольку D1B || AD, то BC || AD.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 5709
книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 16
Название Центральная симметрия
Тема Центральная симметрия
параграф
Номер 1
Название Симметрия помогает решить задачу
Тема Центральная симметрия помогает решить задачу
задача
Номер 16.005

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .