ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55774
Темы:    [ Центральная симметрия помогает решить задачу ]
[ Гомотетия: построения и геометрические места точек ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Даны две концентрические окружности S1 и S2. С помощью циркуля и линейки проведите прямую, на которой эти окружности высекают три равных отрезка.


Подсказка

Примените симметрию относительно произвольной точки меньшей окружности.


Решение

Первый способ.

Предположим, что задача решена. Пусть A, B, C и D — последовательные точки пересечения проведённой прямой с окружностями S1 и S2 (A и D лежат на S1, а B и C — на S2), и AB = BC = CD. При симметрии относительно точки C точка B переходит в точку D, а окружность S2 в равную ей окружность, проходящую через точку D.

Отсюда вытекает следующий способ построения. Строим образ S меньшей окружности S2 относительно её произвольной точки C. Если D — точка пересечения окружностей S и S1, то прямая CD — искомая.

Второй способ.

При гомотетии с коэффициентом $ {\frac{1}{2}}$ относительно произвольной точки D большей окружности точка B переходит в точку C. Следовательно, задача сводится к построению образа меньшей окружности при гомотетии относительно произвольной точки большей окружности с коэффициентом $ {\frac{1}{2}}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6417
книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 16
Название Центральная симметрия
Тема Центральная симметрия
параграф
Номер 3
Название Симметрия помогает решить задачу. Построения
Тема Центральная симметрия помогает решить задачу
задача
Номер 16.018

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .