ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56525
Темы:    [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Сторона квадрата равна 1. Через его центр проведена прямая. Вычислите сумму квадратов расстояний от четырёх вершин квадрата до этой прямой.


Решение

Пусть прямая, проходящая через центр O квадрата ABCD, пересекает сторону AB. Опустим на неё перпендикуляры AP и BQ. Треугольники APO и OQB равны по гипотенузе и острому углу. Поэтому  AP² + BQ² = AP2 + OP² = AO² = ½.


Ответ

1.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 7
Название Задачи для самостоятельного решения
Тема Подобные треугольники (прочее)
задача
Номер 01.069

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .