ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56579
Тема:    [ Связь величины угла с длиной дуги и хорды ]
Сложность: 5
Классы: 8,9
В корзину
Прислать комментарий

Условие

По неподвижной окружности, касаясь ее изнутри, катится без скольжения окружность вдвое меньшего радиуса. Какую траекторию описывает фиксированная точка K подвижной окружности?

Решение

Рассмотрим два положения подвижной окружности: в первый момент, когда точка K попадает на неподвижную окружность (точку касания окружностей в этот момент мы обозначим через K1), и какой-нибудь другой (второй) момент. Пусть O — центр неподвижной окружности, O1 и O2 — положения центра подвижной окружности в первый и во второй моменты соответственно, K2 — положение точки K во второй момент. A — точка касания окружностей во второй момент. Поскольку окружность катится без проскальзывания, длина дуги K1A равна длине дуги K2A. Так как радиус подвижной окружности в два раза меньше,  $ \angle$K2O2A = 2$ \angle$K1OA. Точка O лежит на подвижной окружности, поэтому  $ \angle$K2OA = $ \angle$K2O2A/2 = $ \angle$K1OA, т. е. точки K2, K1 и O лежат на одной прямой.
Траектория движения — диаметр неподвижной окружности.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 2
Название Вписанный угол
Тема Вписанный угол
параграф
Номер 4
Название Связь величины угла с длиной дуги и хорды
Тема Связь величины угла с длиной дуги и хорды
задача
Номер 02.037

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .