ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56595
Тема:    [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Прямая l касается окружности с диаметром AB в точке C; M и N — проекции точек A и B на прямую l, D — проекция точки C на AB. Докажите, что  CD2 = AM . BN.

Решение

Пусть O — центр окружности. Так как  $ \angle$MAC = $ \angle$ACO = $ \angle$CAO, то  $ \triangle$AMC = $ \triangle$ADC. Аналогично  $ \triangle$CDB = $ \triangle$CNB. Так как  $ \triangle$ACD $ \sim$ $ \triangle$CDB, то  CD2 = AD . DB = AM . NB.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 2
Название Вписанный угол
Тема Вписанный угол
параграф
Номер 6
Название Вписанный угол и подобные треугольники
Тема Углы, опирающиеся на равные дуги и равные хорды
задача
Номер 02.052

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .