ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56603
Тема:    [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

В треугольнике ABC проведены высоты AA1, BB1 и CC1B2 и C2 — середины высоты BB1 и CC1. Докажите, что  $ \triangle$A1B2C2 $ \sim$ $ \triangle$ABC.

Решение

Пусть H — точка пересечения высот, M — середина стороны BC. Точки A1, B2 и C2 лежат на окружности с диаметром MH, поэтому  $ \angle$(B2A1, A1C2) = $ \angle$(B2M, MC2) = $ \angle$(AC, AB). Кроме того,  $ \angle$(A1B2, B2C2) = $ \angle$(A1H, HC2) = $ \angle$(BC, AB) и  $ \angle$(A1C2, C2B2) = $ \angle$(BC, AC).

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 2
Название Вписанный угол
Тема Вписанный угол
параграф
Номер 6
Название Вписанный угол и подобные треугольники
Тема Углы, опирающиеся на равные дуги и равные хорды
задача
Номер 02.060

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .