ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56613
Тема:    [ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. Докажите, что ломаная AOC делит ABCD на две фигуры равной площади.

Решение

Пусть  $ \angle$AOB = $ \alpha$ и  $ \angle$COD = $ \beta$. Тогда  $ \alpha$/2 + $ \beta$/2 = $ \angle$ADP + $ \angle$PAD = 90o. А так как  2SAOB = R2sin$ \alpha$ и  2SCOD = R2sin$ \beta$, где R — радиус описанной окружности, то  SAOB = SCOD. Аналогично  SBOC = SAOD.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 2
Название Вписанный угол
Тема Вписанный угол
параграф
Номер 8
Название Вписанный четырехугольник с перпендикулярными диагоналями
Тема Вписанный четырехугольник с перпендикулярными диагоналями
задача
Номер 02.070

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .