ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56653
Тема:    [ Окружности (прочее) ]
Сложность: 2-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Докажите, что из точки A, лежащей вне окружности, можно провести ровно две касательные к окружности, причем длины этих касательных (т. е. расстояния от A до точек касания) равны.

Решение

Пусть $O$ – центр данной окружности. Касательная перпендикулярна радиусу, проведённому к точке касания, значит, точка касания лежит на окружности, построенной на $OA$ как на диаметре. Поскольку такая окружность проходит через $O$, она пересекает данную окружность в двух точках; совокупность двух окружностей симметрична относительно их линии центров, значит, при симметрии одна касательная перейдёт во вторую (и наоборот)   следовательно, длины отрезков таких касательных равны.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 3
Название Окружности
Тема Окружности
параграф
Номер 0
Название Вводные задачи
Тема Окружности (прочее)
задача
Номер 03.000.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .