ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56666
Темы:    [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Через точку P, лежащую на общей хорде AB двух пересекающихся окружностей, проведены хорда KM первой окружности и хорда LN второй окружности. Докажите, что четырехугольник KLMN вписанный.

Решение

Пусть P — точка пересечения диагоналей выпуклого четырехугольника ABCD. Четырехугольник ABCD вписанный тогда и только тогда, когда  $ \triangle$APB $ \sim$ $ \triangle$DPC, т. е.  PA . PC = PB . PD. Так как четырехугольники ALBN и AMBK вписанные, то  PL . PN = PA . PB = PM . PK. Поэтому четырехугольник KLMN вписанный.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 3
Название Окружности
Тема Окружности
параграф
Номер 2
Название Произведение длин отрезков хорд
Тема Произведение длин отрезков хорд и длин отрезков секущих
задача
Номер 03.009

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .