ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56800
Тема:    [ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3
Классы: 9
В корзину
Прислать комментарий

Условие

Даны (2n - 1)-угольник  A1...A2n - 1 и точка O. Прямые AkO и  An + k - 1An + k пересекаются в точке Bk. Докажите, что произведение отношений  An + k - 1Bk/An + kBk(k = 1,..., n) равно 1.

Решение

Легко проверить, что отношение длин отрезков  An + k - 1Bk и  An + kBk равно отношению площадей треугольников  An + k - 1OAk и  AkOAn + k. Перемножая эти равенства, получаем требуемое.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 4
Название Площадь
Тема Площадь
параграф
Номер 8
Название Вспомогательная площадь
Тема Вспомогательная площадь. Площадь помогает решить задачу
задача
Номер 04.049

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .