ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56803
Тема:    [ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4
Классы: 9
В корзину
Прислать комментарий

Условие

Расстояния от точки X стороны BC треугольника ABC до прямых AB и AC равны db и dc. Докажите, что  db/dc = BX . AC/(CX . AB).

Решение

Достаточно заметить, что  db . AB = 2SAXB = BX . AX sin$ \varphi$, где  $ \varphi$ = $ \angle$AXB и  dc . AC = 2SAXC = CX . AX sin$ \varphi$.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 4
Название Площадь
Тема Площадь
параграф
Номер 8
Название Вспомогательная площадь
Тема Вспомогательная площадь. Площадь помогает решить задачу
задача
Номер 04.052

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .