ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56808
Тема:    [ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 5
Классы: 9
В корзину
Прислать комментарий

Условие

В остроугольном треугольнике ABC проведены высоты BB1 и CC1 и на сторонах AB и AC взяты точки K и L так, что AK = BC1 и AL = CB1. Докажите, что прямая AO, где O — центр описанной окружности треугольника ABC, делит отрезок KL пополам.

Решение

Достаточно проверить, что  SAKO = SALO, т. е.  AO . AL sin OAL = AO . AK sin OAK. Ясно, что  AL = CB1 = BC cos C, sin OAL = cos B, AK = BC1 = BC cos B и  sin OAK = cos C.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 4
Название Площадь
Тема Площадь
параграф
Номер 8
Название Вспомогательная площадь
Тема Вспомогательная площадь. Площадь помогает решить задачу
задача
Номер 04.056

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .