Условие
Вписанная (или вневписанная) окружность
треугольника
ABC касается прямых
BC,
CA и
AB в точках
A1,
B1
и
C1. Докажите, что прямые
AA1,
BB1 и
CC1 пересекаются
в одной точке.
Решение
Ясно, что
AB1 =
AC1,
BA1 =
BC1 и
CA1 =
CB1, причем
в случае вписанной окружности на сторонах треугольника
ABC
лежат три точки, а в случае вневписанной — одна точка. Остается
воспользоваться теоремой Чевы.
Источники и прецеденты использования
|
книга |
Автор |
Прасолов В.В. |
Год издания |
2001 |
Название |
Задачи по планиметрии |
Издательство |
МЦНМО |
Издание |
4* |
глава |
Номер |
5 |
Название |
Треугольники |
параграф |
Номер |
8 |
Название |
Теорема Чевы |
Тема |
Теоремы Чевы и Менелая |
задача |
Номер |
05.071 |