ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56922
Тема:    [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9
В корзину
Прислать комментарий

Условие

Прямые AP, BP и CP пересекают прямые BC, CA и AB в точках A1, B1 и C1 соответственно. Точки A2, B2 и C2 выбраны на прямых BC, CA и AB так, что  $ \overline{BA_2}$ : $ \overline{A_2C}$ = $ \overline{A_1C}$ : $ \overline{BA_1}$ $ \overline{CB_2}$ : $ \overline{B_2A}$ = $ \overline{B_1A}$ : $ \overline{CB_1}$ и  $ \overline{AC_2}$ : $ \overline{C_2B}$ = $ \overline{C_1B}$ : $ \overline{AC_1}$. Докажите, что прямые AA2, BB2 и CC2 тоже пересекаются в одной точке Q (или параллельны).

Решение

Решение задачи очевидным образом следует из теоремы Чевы.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 8
Название Теорема Чевы
Тема Теоремы Чевы и Менелая
задача
Номер 05.077

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .