ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56980
Тема:    [ Точка Лемуана ]
Сложность: 3
Классы: 9
В корзину
Прислать комментарий

Условие

Отрезок B1C1, где точки B1 и C1 лежат на лучах AC и AB, называют антипараллельным стороне BC, если  $ \angle$AB1C1 = $ \angle$ABC и  $ \angle$AC1B1 = $ \angle$ACB. Докажите, что симедиана AS делит пополам любой отрезок B1C1, антипараллельный стороне BC.

Решение

При симметрии относительно биссектрисы угла A отрезок B1C1 переходит в отрезок, параллельный стороне BC, а прямая AS — в прямую AM, где M — середина стороны BC.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 5
Название Треугольники
параграф
Номер 13
Название Точка Лемуана
Тема Точка Лемуана
задача
Номер 05.125

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .