ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57091
Тема:    [ Вписанные и описанные многоугольники ]
Сложность: 5
Классы: 9
В корзину
Прислать комментарий

Условие

В окружность вписан 2n-угольник  A1...A2n. Пусть  p1,..., p2n — расстояния от произвольной точки M окружности до сторон  A1A2, A2A3,..., A2nA1. Докажите, что  p1p3...p2n - 1 = p2p4...p2n.

Решение

В любом треугольнике выполнено соотношение hc = ab/2R (задача 12.33), поэтому  pk = MAk . MAk + 1/2R. Следовательно,

p1p3...p2n - 1 = MA1 . MA2...MA2n/(2R)n = p2p4...p2n.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 6
Название Многоугольники
Тема Многоугольники
параграф
Номер 7
Название Вписанные и описанные многоугольники
Тема Вписанные и описанные многоугольники
задача
Номер 06.078

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .