ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57235
Тема:    [ Треугольник (построения) ]
Сложность: 5
Классы: 8,9
В корзину
Прислать комментарий

Условие

Дан треугольник ABC, причем AB < BC. Постройте на стороне AC точку D так, чтобы периметр треугольника ABD был равен длине стороны BC.

Решение

Построим точку K на стороне AC так, что AK = BC - AB. Пусть точка D лежит на отрезке AC. Равенство  AD + BD + AB = BC эквивалентно равенству AD + BD = AK. Для точки D, лежащей на отрезке AK, последнее равенство перепишется в виде  AD + BD = AD + DK, а для точки D, не лежащей на отрезке AK, — в виде  AD + BD = AD - DK. В первом случае BD = DK, а второй случай невозможен. Поэтому точка D является точкой пересечения серединного перпендикуляра к отрезку BK и отрезка AC.


Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 8
Название Построения
Тема Построения
параграф
Номер 6
Название Треугольник
Тема Треугольник (построения)
задача
Номер 08.041

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .