ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57332
Тема:    [ Неравенство треугольника (прочее) ]
Сложность: 4+
Классы: 8
В корзину
Прислать комментарий

Условие

а) Докажите, что при переходе от невыпуклого многоугольника к его выпуклой оболочке периметр уменьшается. (Выпуклой оболочкой многоугольника называют наименьший выпуклый многоугольник, его содержащий.)
б) Внутри выпуклого многоугольника лежит другой выпуклый многоугольник. Докажите, что периметр внешнего многоугольника не меньше, чем периметр внутреннего.

Решение

а) При переходе от невыпуклого многоугольника к его выпуклой оболочке некоторые ломаные, образованные сторонами, заменяются прямолинейными отрезками (рис.). Остается заметить, что длина ломаной больше длины отрезка с теми же концами.


б) Построим на сторонах внутреннего многоугольника полуполосы, обращенные наружу; параллельные края полуполос перпендикулярны соответствующей стороне многоугольника (рис.). Обозначим через P ту часть периметра внешнего многоугольника, которая находится внутри этих полуполос. Тогда периметр внутреннего многоугольника не превосходит P, а внешнего больше P.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 9
Название Геометрические неравенства
Тема Геометрические неравенства
параграф
Номер 4
Название Разные задачи на неравенство треугольника
Тема Неравенство треугольника (прочее)
задача
Номер 09.027

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .