ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 57496
Тема:    [ Неравенства для остроугольных треугольников ]
Сложность: 5
Классы: 8
В корзину
Прислать комментарий

Условие

Докажите, что треугольник ABC остроугольный тогда и только тогда, когда длины его проекций на три различных направления равны.

Решение

Пусть  $ \angle$A $ \leq$ $ \angle$B $ \leq$ $ \angle$C. Предположим сначала, что треугольник ABC остроугольный. При повороте прямой l, в исходном положении параллельной AB, длина проекции треугольника на l будет сначала монотонно изменяться от c до hb, затем от hb до a, от a до hc, от hc до b, от b до ha и, наконец, от ha до c. Так как hb < a, то существует такое число x, что hb < x < a. Легко проверить, что отрезок длиной x встречается на любом из первых четырех интервалов монотонности.
Предположим теперь, что треугольник ABC не остроугольный. При повороте прямой l, в исходном положении параллельной AB, длина проекции треугольника на l монотонно убывает сначала от c до hb, затем от hb до hc; после этого она монотонно возрастает сначала от hc до ha, а затем от ha до c. Всего получается два интервала монотонности.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 10
Название Неравенства для элементов треугольника
Тема Неравенства для элементов треугольника.
параграф
Номер 12
Название Неравенства для остроугольных треугольников
Тема Неравенства для остроугольных треугольников
задача
Номер 10.084

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .